Monday, February 13, 2017

How Life (and Death) Spring From Disorder

There’s a thermodynamic cost to storing information about the past that has no predictive value for the future, Still and colleagues show. To be maximally efficient, a system has to be selective. If it indiscriminately remembers everything that happened, it incurs a large energy cost. On the other hand, if it doesn’t bother storing any information about its environment at all, it will be constantly struggling to cope with the unexpected. “A thermodynamically optimal machine must balance memory against prediction by minimizing its nostalgia — the useless information about the past,’’ said a co-author, David Sivak, now at Simon Fraser University in Burnaby, British Columbia. In short, it must become good at harvesting meaningful information — that which is likely to be useful for future survival.

You’d expect natural selection to favor organisms that use energy efficiently. But even individual biomolecular devices like the pumps and motors in our cells should, in some important way, learn from the past to anticipate the future. To acquire their remarkable efficiency, Still said, these devices must “implicitly construct concise representations of the world they have encountered so far, enabling them to anticipate what’s to come.”

[---]

Entropy maximization has long been thought to be a trait of nonequilibrium systems. But the system in this model obeys a rule that lets it maximize entropy over a fixed time window that stretches into the future. In other words, it has foresight. In effect, the model looks at all the paths the particles could take and compels them to adopt the path that produces the greatest entropy. Crudely speaking, this tends to be the path that keeps open the largest number of options for how the particles might move subsequently.

You might say that the system of particles experiences a kind of urge to preserve freedom of future action, and that this urge guides its behavior at any moment. The researchers who developed the model — Alexander Wissner-Gross at Harvard University and Cameron Freer, a mathematician at the Massachusetts Institute of Technology — call this a “causal entropic force.” In computer simulations of configurations of disk-shaped particles moving around in particular settings, this force creates outcomes that are eerily suggestive of intelligence.


In one case, a large disk was able to “use” a small disk to extract a second small disk from a narrow tube — a process that looked like tool use. Freeing the disk increased the entropy of the system. In another example, two disks in separate compartments synchronized their behavior to pull a larger disk down so that they could interact with it, giving the appearance of social cooperation.

Of course, these simple interacting agents get the benefit of a glimpse into the future. Life, as a general rule, does not. So how relevant is this for biology? That’s not clear, although Wissner-Gross said that he is now working to establish “a practical, biologically plausible, mechanism for causal entropic forces.” In the meantime, he thinks that the approach could have practical spinoffs, offering a shortcut to artificial intelligence. “I predict that a faster way to achieve it will be to discover such behavior first and then work backward from the physical principles and constraints, rather than working forward from particular calculation or prediction techniques,” he said. In other words, first find a system that does what you want it to do and then figure out how it does it.

Aging, too, has conventionally been seen as a trait dictated by evolution. Organisms have a lifespan that creates opportunities to reproduce, the story goes, without inhibiting the survival prospects of offspring by the parents sticking around too long and competing for resources. That seems surely to be part of the story, but Hildegard Meyer-Ortmanns, a physicist at Jacobs University in Bremen, Germany, thinks that ultimately aging is a physical process, not a biological one, governed by the thermodynamics of information.


- More Here

No comments: