Monday, July 24, 2017

Future of Deep Learning


  • Models will be more like programs, and will have capabilities that go far beyond the continuous geometric transformations of the input data that we currently work with. These programs will arguably be much closer to the abstract mental models that humans maintain about their surroundings and themselves, and they will be capable of stronger generalization due to their rich algorithmic nature.
  • In particular, models will blend algorithmic modules providing formal reasoning, search, and abstraction capabilities, with geometric modules providing informal intuition and pattern recognition capabilities. AlphaGo (a system that required a lot of manual software engineering and human-made design decisions) provides an early example of what such a blend between symbolic and geometric AI could look like.
  • They will be grown automatically rather than handcrafted by human engineers, using modular parts stored in a global library of reusable subroutines—a library evolved by learning high-performing models on thousands of previous tasks and datasets. As common problem-solving patterns are identified by the meta-learning system, they would be turned into a reusable subroutine—much like functions and classes in contemporary software engineering—and added to the global library. This achieves the capability for abstraction.
  • This global library and associated model-growing system will be able to achieve some form of human-like "extreme generalization": given a new task, a new situation, the system would be able to assemble a new working model appropriate for the task using very little data, thanks to 1) rich program-like primitives that generalize well and 2) extensive experience with similar tasks. In the same way that humans can learn to play a complex new video game using very little play time because they have experience with many previous games, and because the models derived from this previous experience are abstract and program-like, rather than a basic mapping between stimuli and action.
  • As such, this perpetually-learning model-growing system could be interpreted as an AGI—an Artificial General Intelligence. But don't expect any singularitarian robot apocalypse to ensue: that's a pure fantasy, coming from a long series of profound misunderstandings of both intelligence and technology. This critique, however, does not belong here.

- More Here

No comments: