Saturday, September 30, 2017

Wisdom Of The Week



In the talk, Naftali Tishby, a computer scientist and neuroscientist from the Hebrew University of Jerusalem, presented evidence in support of a new theory explaining how deep learning works. Tishby argues that deep neural networks learn according to a procedure called the “information bottleneck,” which he and two collaborators first described in purely theoretical terms in 1999. The idea is that a network rids noisy input data of extraneous details as if by squeezing the information through a bottleneck, retaining only the features most relevant to general concepts. Striking new computer experiments by Tishby and his student Ravid Shwartz-Ziv reveal how this squeezing procedure happens during deep learning, at least in the cases they studied.

Tishby’s findings have the AI community buzzing. “I believe that the information bottleneck idea could be very important in future deep neural network research,” said Alex Alemi of Google Research, who has already developed new approximation methods for applying an information bottleneck analysis to large deep neural networks. The bottleneck could serve “not only as a theoretical tool for understanding why our neural networks work as well as they do currently, but also as a tool for constructing new objectives and architectures of networks,” Alemi said.


New Theory Cracks Open the Black Box of Deep Learning

No comments: