Swiss neuroscientists Valerie Hinard and colleagues cultured mouse cortical neurons in dishes equipped with arrays of electrodes. This allowed them to record the electrical activity produced by the growing 'brain'. They also measured the expression of different genes in the neurons, and compared these to gene expression in real mouse brains.
Finally - and this might end up being the most important bit - the authors compared the biochemistry of the 'sleep deprived' dishes to the 'well rested' ones. They found remarkably few major changes, but they did observe a significant increase in the levels of lysolipids.
Lysolipids are breakdown products of phospholipids, which make up the membranes of all living cells. When present in membranes, lysolipids can act as 'detergents', distorting their structure. That's bad. These results suggest that sleep might serve to prevent the build up of lysolipids. If that pans out, it would mean that the function of sleep is very primitive, a fundamental biological necessity for any connected network of neurons, even what amounts to a random medley thrown together on a plate.
- More Here
Finally - and this might end up being the most important bit - the authors compared the biochemistry of the 'sleep deprived' dishes to the 'well rested' ones. They found remarkably few major changes, but they did observe a significant increase in the levels of lysolipids.
Lysolipids are breakdown products of phospholipids, which make up the membranes of all living cells. When present in membranes, lysolipids can act as 'detergents', distorting their structure. That's bad. These results suggest that sleep might serve to prevent the build up of lysolipids. If that pans out, it would mean that the function of sleep is very primitive, a fundamental biological necessity for any connected network of neurons, even what amounts to a random medley thrown together on a plate.
- More Here
No comments:
Post a Comment