One more noble attempt to enlighten the anti-GMO brigade, who neither understand science nor hunger - Here (Again, I cannot stress the importance of difference between patent battle against companies like Monsanto and irrationally obliterating GMO foods)
"On Safety:
There is broad scientific consensus that genetically engineered crops currently on the market are safe to eat. After 14 years of cultivation and a cumulative total of 2 billion acres planted, no adverse health or environmental effects have resulted from commercialization of genetically engineered crops (Board on Agriculture and Natural Resources, Committee on Environmental Impacts Associated with Commercialization of Transgenic Plants, National Research Council and Division on Earth and Life Studies 2002).
Still, to date, compounds with harmful effects on humans or animals have been documented only in foods developed through conventional breeding approaches. For example, conventional breeders selected a celery variety with relatively high amounts of psoralens to deter insect predators that damage the plant. Some farm workers who harvested such celery developed a severe skin rash—an unintended consequence of this breeding strategy (Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health and National Research Council 2004).
On Insect Resistance:
In the 1960s, the biologist Rachel Carson brought the harmful environmental and human health impacts resulting from overuse or misuse of some insecticides to the attention of the wider public. Even today, thousands of pesticide poisonings are reported each year (1200 illnesses related to pesticide poisoning in California, 300,000 pesticide-related deaths globally).
This is one reason some of the first genetically engineered crops were designed to reduce reliance on sprays of broad-spectrum insecticides for pest control. Corn and cotton have been genetically engineered to produce proteins from the soil bacteria Bacillus thuringiensis (Bt) that kill some key caterpillar and beetle pests of these crops. Bt toxins cause little or no harm to most beneficial insects, wildlife, and people (Mendelsohn et al. 2003).
On Biodiversity & Genetic diversity:
Planting of Bt crops has also supported another important goal of sustainable agriculture: increased biological diversity. An analysis of 42 field experiments indicates that nontarget invertebrates (i.e., insects, spiders, mites, and related species that are not pests targeted by Bt crops) were more abundant in Bt cotton and Bt corn fields than in conventional fields managed with insecticides (Marvier et al. 2007). The conclusion that growing Bt crops promotes biodiversity assumes a baseline condition of insecticide treatments, which applies to 23% of corn acreage and 71% of cotton acreage in the United States in 2005 (Marvier et al. 2007).
These results underscore a well-known paradigm in agriculture: pest resistance will evolve is the selection pressure is high. Why then, have most Bt crops remained effective against most pests for more than a decade. The answer is genetic diversity. The inclusion in farmers fields of crop plants that do not make Bt toxins has helped to delay evolution of pest resistance to Bt crops."
"On Safety:
There is broad scientific consensus that genetically engineered crops currently on the market are safe to eat. After 14 years of cultivation and a cumulative total of 2 billion acres planted, no adverse health or environmental effects have resulted from commercialization of genetically engineered crops (Board on Agriculture and Natural Resources, Committee on Environmental Impacts Associated with Commercialization of Transgenic Plants, National Research Council and Division on Earth and Life Studies 2002).
Still, to date, compounds with harmful effects on humans or animals have been documented only in foods developed through conventional breeding approaches. For example, conventional breeders selected a celery variety with relatively high amounts of psoralens to deter insect predators that damage the plant. Some farm workers who harvested such celery developed a severe skin rash—an unintended consequence of this breeding strategy (Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health and National Research Council 2004).
On Insect Resistance:
In the 1960s, the biologist Rachel Carson brought the harmful environmental and human health impacts resulting from overuse or misuse of some insecticides to the attention of the wider public. Even today, thousands of pesticide poisonings are reported each year (1200 illnesses related to pesticide poisoning in California, 300,000 pesticide-related deaths globally).
This is one reason some of the first genetically engineered crops were designed to reduce reliance on sprays of broad-spectrum insecticides for pest control. Corn and cotton have been genetically engineered to produce proteins from the soil bacteria Bacillus thuringiensis (Bt) that kill some key caterpillar and beetle pests of these crops. Bt toxins cause little or no harm to most beneficial insects, wildlife, and people (Mendelsohn et al. 2003).
On Biodiversity & Genetic diversity:
Planting of Bt crops has also supported another important goal of sustainable agriculture: increased biological diversity. An analysis of 42 field experiments indicates that nontarget invertebrates (i.e., insects, spiders, mites, and related species that are not pests targeted by Bt crops) were more abundant in Bt cotton and Bt corn fields than in conventional fields managed with insecticides (Marvier et al. 2007). The conclusion that growing Bt crops promotes biodiversity assumes a baseline condition of insecticide treatments, which applies to 23% of corn acreage and 71% of cotton acreage in the United States in 2005 (Marvier et al. 2007).
These results underscore a well-known paradigm in agriculture: pest resistance will evolve is the selection pressure is high. Why then, have most Bt crops remained effective against most pests for more than a decade. The answer is genetic diversity. The inclusion in farmers fields of crop plants that do not make Bt toxins has helped to delay evolution of pest resistance to Bt crops."
No comments:
Post a Comment