Friday, September 23, 2011

How Teenage Brains Saved Humanity!!

Teens gravitate toward peers for another, more powerful reason: to invest in the future rather than the past. We enter a world made by our parents. But we will live most of our lives, and prosper (or not) in a world run and remade by our peers. Knowing, understanding, and building relationships with them bears critically on success. Socially savvy rats or monkeys, for instance, generally get the best nesting areas or territories, the most food and water, more allies, and more sex with better and fitter mates. And no species is more intricately and deeply social than humans are.

This supremely human characteristic makes peer relations not a sideshow but the main show. Some brain-scan studies, in fact, suggest that our brains react to peer exclusion much as they respond to threats to physical health or food supply. At a neural level, in other words, we perceive social rejection as a threat to existence. Knowing this might make it easier to abide the hysteria of a 13-year-old deceived by a friend or the gloom of a 15-year-old not invited to a party. These people! we lament. They react to social ups and downs as if their fates depended upon them! They're right. They do.

In scientific terms, teenagers can be a pain in the ass. But they are quite possibly the most fully, crucially adaptive human beings around. Without them, humanity might not have so readily spread across the globe.
In times of doubt, take inspiration in one last distinction of the teen brain—a final key to both its clumsiness and its remarkable adaptability. This is the prolonged plasticity of those late-developing frontal areas as they slowly mature. As noted earlier, these areas are the last to lay down the fatty myelin insulation—the brain's white matter—that speeds transmission. And at first glance this seems like bad news: If we need these areas for the complex task of entering the world, why aren't they running at full speed when the challenges are most daunting?

The answer is that speed comes at the price of flexibility. While a myelin coating greatly accelerates an axon's bandwidth, it also inhibits the growth of new branches from the axon. According to Douglas Fields, an NIH neuroscientist who has spent years studying myelin, "This makes the period when a brain area lays down myelin a sort of crucial period of learning—the wiring is getting upgraded, but once that's done, it's harder to change."

-
More Here

No comments: