Friday, November 5, 2021

Consequences of Whaling & Now, Talking to Whales

As usual, Ed Young has an insightful piece on the consequences of 20th century Whaling

Baleen whales are elusive, often foraging well below the ocean’s surface. They are also elastic: When a blue whale lunges at krill, its mouth can swell to engulf a volume of water larger than its own body. For these reasons, scientists have struggled to work out how much these creatures eat. In the past, researchers either examined the stomachs of beached whales or extrapolated upward from much smaller animals, such as mice and dolphins. But new technologies developed over the past decade have provided better data. Drones can photograph feeding whales, allowing researchers to size up their ballooning mouths. Echo sounders can use sonar to gauge the size of krill swarms. And suction-cup-affixed tags that come with accelerometers, GPS, and cameras can track whales deep underwater—“I think of them as whale iPhones,” Savoca said.

Using these devices, he and his colleagues calculated that baleen whales eat three times more than researchers had previously thought. They fast for two-thirds of the year, subsisting on their huge stores of blubber. But on the 100 or so days when they do eat, they are incredibly efficient about it. Every feeding day, these animals can snarf down 5 to 30 percent of their already titanic body weight. A blue whale might gulp down 16 metric tons of krill.

Surely, then, the mass slaughter of whales must have created a paradise for their prey? After industrial-era whalers killed off these giants, about 380 million metric tons of krill would have gone uneaten every year. In the 1970s, many scientists assumed that the former whaling grounds would become a krilltopia, but instead, later studies showed that krill numbers had plummeted by more than 80 percent.

The explanation for this paradox involves iron, a mineral that all living things need in small amounts. The north Atlantic Ocean gets iron from dust that blows over from the Sahara. But in the Southern Ocean, where ice cloaks the land, iron is scarcer. Much of it is locked inside the bodies of krill and other animals. Whales unlock that iron when they eat, and release it when they poop. The defecated iron then stimulates the growth of tiny phytoplankton, which in turn feed the krill, which in turn feed the whales, and so on.

[---]

The new study, says Kelly Benoit-Bird, a marine biologist at the Monterey Bay Aquarium Research Institute, in California, is an important reminder of how “exploited species are part of a complex web, with many effects cascading from our actions.” Killing a whale leaves a hole in the ocean that’s far bigger than the creature itself.

There are more whales now than there were even a few years ago—in early 2020, scientists rejoiced when they spotted 58 blue whales in sub-Antarctic waters where mere handfuls of the animals had been seen in years prior. But that number is still depressingly low. “You can’t bring back the whales until you bring back their food,” Savoca said. And he thinks he knows how to do that.

In a rare moment for humanity - for all the massacre of whales that humans unleashed in the 20th century (wonder why Moby Dick is a classic?), now some nobles souls are working on talking to whales

It started in 2017 when an international group of scientists spent a year together at Harvard University in Cambridge, Massachusetts, at the Radcliffe Fellowship, a program that promises “an opportunity to step away from usual routines.” One day, Shafi Goldwasser, a computer scientist and cryptography expert also from Israel, came by the office of David Gruber, a marine biologist at City University of New York. Goldwasser, who had just been named the new director of the Simons Institute for the Theory of Computing at the University of California, Berkeley, had heard a series of clicking sounds that reminded her of the noise a faulty electronic circuit makes—or of Morse code. That’s how sperm whales talk to each other, Gruber told her. “I said, ‘Maybe we should do a project where we are translating the whale sounds into something that we as humans can understand,’” Goldwasser recounts. “I really said it as an afterthought. I never thought he was going to take me seriously.”

But the fellowship was an opportunity to take far-out ideas seriously. At a dinner party, they presented the idea to Bronstein, who was following recent advancements in natural language processing (NLP), a branch of AI that deals with the automated analysis of written and spoken speech—so far, just human language. Bronstein was convinced that the codas, as the brief sperm whale utterances are called, have a structure that lends them to this kind of analysis. Fortunately, Gruber knew a biologist named Shane Gero who had been recording a lot of sperm whale codas in the waters around the Caribbean island of Dominica since 2005. Bronstein applied some machine-learning algorithms to the data. “They seemed to be working very well, at least with some relatively simple tasks,” he says. But this was no more than a proof of concept. For a deeper analysis, the algorithms needed more context and more data—millions of whale codas.

[---]

The name of the CETI project evokes SETI, the search for extraterrestrial intelligence, which has scanned the sky for radio signals of alien civilizations since the 1960s, so far without finding a single message. Since no sign of ET has been found, Bronstein is convinced we should try out our decoding skills on signals that we can detect here on Earth. Instead of pointing our antennas toward space, we can eavesdrop on a culture in the ocean that is at least as alien to us. “I think it is very arrogant to think that Homo sapiens is the only intelligent and sentient creature on Earth,” Bronstein says. “If we discover that there is an entire civilization basically under our nose—maybe it will result in some shift in the way that we treat our environment. And maybe it will result in more respect for the living world.”

No comments: