Thursday, June 19, 2014

Can Neuroscience Help Us Rewrite Our Most Traumatic Memories?

Memory “works a little bit more like a Wikipedia page,” Loftus said in a recent speech. “You can go in there and change it, but so can other people.”

Scientists were already aware that making a memory requires chemical activity in the brain. But neurons are programmed by our DNA, and they rarely change. On the other hand, synapses, the small gaps between neurons, turn out to be highly mutable. Synaptic networks grow as we learn, often sprouting entirely new branches, based on the way that chemical messengers called neurotransmitters pass between neurons. “The growth and maintenance of new synaptic terminals makes memory persist,” Kandel wrote in his book “In Search of Memory: The Emergence of a New Science of Mind” (2006). “Thus, if you remember anything of this book, it will be because your brain is slightly different after you have finished reading it.”

Nader was thrilled by the idea that one could watch an organism form a memory. “I was not trained as a neuroscientist in memory or in consolidation,” he told me recently on the phone from McGill University, where he is now a professor of psychology. “Kandel talked about the physiology of the neuron on the most basic level, and I was amazed. But I didn’t understand why a thing like that—the complete chemical production required to form a memory—would happen just once. I looked at the data and thought, What makes us so certain that, after our memories are formed, they are fixed forever?”

- More here from Michael Specter

No comments: