Tuesday, June 24, 2014

Neurons Pull Together as a Brain Learns

When a cartoon character gets an idea, you know it. A lightbulb goes on over Wile E. Coyote’s head, or a ding sounds as Goofy puts two and two together.

While the lightbulb and sound effects are the stuff of cartoons, scientists can, in a way, watch learning in action. In a new study, a learning task in rats was linked to increases in activity patterns in groups of brain cells. The results might help scientists pin down what learning looks like at the nerve cell level, and give us a clue about how memories are made.

Different areas of the brain communicate with each other, transferring information from one area to another for processing and interpretation. Brain cell meets brain cell at connections called synapses. But to transfer information between areas often takes more than one neuron firing a lonely signal.

It takes cortical oscillations — networks of brain cells sending electrical signals in concert — over and over again for a message to transmit from one brain area to another. Changes in electrical fields increase the probability that neurons in a population will fire. These cortical oscillations are like a large crowd chanting. Not all voices may be yelling at once, some people may be ahead or behind, some may even be whispering, but you still hear an overwhelming “USA! USA!”

Cortical oscillations can occur within a single brain area, or they can extend from one area to another. “The oscillation tells you what the other brain area is likely to ‘see’ when it gets that input,” explains Leslie Kay, a neuroscientist at the University of Chicago. Once the receiving area ‘sees’ the incoming oscillation, it may synchronize its own population firing, joining in the chant. “A synchronized pattern of oscillations in two separate brain regions serves to communicate between the two regions,” says Kei Igarashi, a neuroscientist at the Norwegian University of Science and Technology in Trondheim.

Cortical oscillations are found all over the brain. They play a role in everything from motor coordination to seizures to sleep. They are also thought to be associated with learning and memory.


- More Here

No comments: