Wednesday, February 26, 2020

Exposome - Tracking A Lifetime Of Exposures To Better Understand Disease

“We think about all health and illness as a combination of genes and the environment, and now it really is time to fill out the environment side of that equation,” says Julia Brody, a toxicologist affiliated with Brown University and the leader of the Silent Spring Institute, which studies environmental links to breast cancer. “We’ve made an enormous investment in understanding the genome and almost nothing comparatively to focus on the exposome.”

Impossible or not, researchers are forging ahead, breaking off bits and pieces of a lifetime’s exposure to put under the microscope. Still, discussions continue about how to make real progress and how to collect and examine information in a meaningful way.

Some scientists are advocating for more air monitors in cities and homes. Others are developing wearable monitors that soak up pieces of the environment as people move through their day. Some are trying to match tracking data from cell phones to satellite indicators of air quality, helping to assess individual exposures based on a person’s locale and movements. Still other researchers are looking inside the body, hoping to identify chemical footprints that distinct exposures may have left behind.

[---]

It was a concern for unexplained diseases that led cancer researcher Christopher Wild to first come up with the term “exposome” in 2005. Wild had closely followed the race to sequence the human genome, which had successfully concluded two years prior, and worried that, in its eagerness to advance genetics, the world had forgotten the importance of environmental exposures in health. It’s a sentiment that has only grown stronger in recent years as genetics has failed to yield clear links to many cancers and other diseases. A recent study looked at the prevalence of 28 chronic conditions in twins and found that genetics explained less than 20 percent of the risk in most of the illnesses examined. Even in asthma — which ranked highest in terms of genetic contribution — genetics explained less than 50 percent of the risk. For leukemia — on the other end of the rankings — genetics explained only 3 percent.

[---]

Simply getting a handle on how many chemicals are out there is harder than it sounds. A recent study attempted this in 100 consumer products. Toothpaste contained 85 chemicals, while one plastic children’s toy contained about 300. Across all the products, the study detected 4,270 unique chemical signatures and tentatively identified 1,602 of those. But only 30 percent of those 1,602 chemicals could be matched to public lists of known ingredients in consumer products or compounds of toxicological interest.

“There’s got to be tens of millions — hundreds of millions, if not more,” says Jon Sobus, an environmental health scientist at the US Environmental Protection Agency and coauthor on the consumer products study. “Where does the number of chemicals end?”

-
More Here

No comments: